⁷⁹Br NQR Spectra of the Impurity Molecules of Tetrabromides of Group IV Elements in the Matrix Crystals of Group IV Element Halides*

G. K. Semin, A. M. Raevsky, S. I. Kuznetsov, T. L. Khotsyanova, and S. I. Gushchin Institute of Organo-Element Compounds, Academy of Sciences of Russia, Moscow

Z. Naturforsch. 47a, 111-116 (1992); received December 18, 1991

Changes in 79 Br NQR spectra of the impurity molecules EBr_4 (2–5% mol) (E=C, Si, Ti, Ge, Sn) in the matrix crystals of group IV element tetrahalides $EHal_4$ (E=Si. Ti, Ge, Sn; Hal = Cl, Br) were studied at 77 K. The mixtures of these components are substitution solid solutions (SS), which was proved by the appearance of characteristic satellites in the NQR spectra of the matrix crystals. Changes in the 79 Br NQR spectra of the impurity molecules were analyzed from the viewpoint of packing factors and the type of nearest environment.

In the temperature range 77-270 K an abnormal temperature dependence of the ⁷⁹Br NQR frequencies of TiBr₄ impurity in SiBr₄ matrix was observed for both lines of the cubic phase. The temperature dependence of the ⁷⁹Br NQR frequencies of SiBr impurity in TiBr₄ matrix is normal.

Key words: 79,81Br NQR, Solid solutions, Group IV element tetrahalides, Temperature dependence of NQR frequencies.

Introduction

We have studied during several years molecular crystals of model solid solutions as to changes in the NQR spectra of the atoms of matrix crystals [1-4] and changes in the NQR spectra of impurity molecules [5].

A special study was dedicated to a continuous series of solid solutions forming isomorphous crystals.

The interaction of the impurity molecules with the molecules of the matrix lattice allows to "unify" the crystal lattice effect on the impurity spectrum [6] and to study fine differences of the crystal field by introducing small amounts of impurities as probes.

In the present work we deal with the latter problem using solid solutions of tetrahalides of group IV elements

A comparative study of the ³⁵Cl and ⁷⁹Br NQR spectra of the component substances was carried out previously [7].

The matrix tetrachlorides crystallize in the structure type (ST) of the monoclinic modification of $SnBr_4$ (space group $P2_1/c$, Z=4)¹. The molecules occupy

positions which correspond to the quadruplet NQR spectrum (see Table 1).

The matrix of tetrabromides crystallize both in the monoclinic (ST SnBr₄) and cubic modification (ST SnI₄, space group Pa3, Z=8)². In the cubic modification the molecules are on the symmetry axes 3 which corresponds to the doublet NQR spectrum with the line intensity ratio 1:3.

Tetrabromides of the group IV elements C, Si, Ge, Sn, and Ti were used as impurities (see Tables 1-3). Titanium tetrahalides were chosen to compare them with tetrahalides of the nontransitional elements. The impurity amounts in the matrix were 2-5%.

It was of interest to study:

- 1. Changes in the NQR spectrum of the impurity on introducing it in an alien lattice.
- NQR frequency shifts depending on the type of the matrix lattice.
- 3. Character of the mutual positions of spectral lines due to changes in the local symmetry.

Additionally, we tried to clear up how well-reasoned was our assumption concerning the existence of a weak intermolecular coordination element-halogen in the structure of SnBr₄ type and to determine the ratio of the volume- and intramolecular factors in the abnormal temperature dependence of the bromine NQR frequencies in TiBr₄.

* Presented at the XIth International Symposium on Nuclear Quadrupole Resonance Spectroscopy, London, U.K., July 15-19, 1991.

Reprint requests to Mr. A. M. Raevsky, Institute of Organo-Element Compounds, Academy of Sciences of the Russia, 28 Vavilov St., Moscow 117813, Russia.

0932-0784 / 92 / 0100-0111 \$ 01.30/0. - Please order a reprint rather than making your own copy.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

² Type III according to [7].

¹ Type II according to [7].

Table 1. ⁷⁹Br NQR spectrum of CBr₄ and ³⁵Cl NQR spectra of matrix crystals of group IV element tetrachlorides with SnBr₄ type structure (77 K, frequencies in MHz).

CBr ₄			SiCl ₄	$\mathrm{GeCl_4}$	TiCl ₄	SnCl ₄
318.33 31 319.14 31	9.41 320.83 9.46 320.91 9.96 321.14 0.83 321.36	322.59 322.59	20.408 20.415	25.715 25.735	6.038 6.081	24.140 24.226

Table 2. ⁷⁹Br NQR spectra of the impurity molecules of group IV element tetrabromides with SnBr₄ type structure (77 K, frequencies in MHz).

Lattice	Impurit	y			
	CBr ₄	SiBr ₄ (II)	GeBr ₄ (III)	TiBr ₄ (IV)	SnBr ₄ (V)
SiCl ₄ (1)	323.09 323.89 324.40 324.60	175.526 176.628 176.807 176.915	209.47 210.96 211.15 211.22	46.62 47.02 47.02 47.87	194.12 196.34 198.02 198.16
GeCl ₄ (2)	322.61 324.02 324.48 324.68	175.538 177.214 177.214 177.250	209.27 211.39 211.39 211.60	46.58 47.17 47.17 48.14	
TiCl ₄ (3)	322.61 324.26 324.32 324.93	176.029 177.274 177.525 177.621	209.55 211.60 211.92 212.14		
SnCl ₄ (4)	322.02 324.90 325.09 325.09	176.137 178.160 178.328 178.328	209.37 212.34 212.73 213.28		
GrBr ₄ (5)			208.91 210.80 211.74 211.81		
TiBr ₄ (6)		176.64 177.54 177.54 177.94		46.943 47.060 47.454 47.999	
SnBr ₄ (7)	321.43 323.57 324.17 324.53	176.09 177.73 178.17 178.30	209.30 212.21 212.52 212.70	47.104 47.628 47.978 48.889	193.964 197.778 198.002 198.283

Experimental

All ⁷⁹Br NQR spectra at 77 K and ^{79,81}Br NQR spectra in the temperature range 77–270 K for the solid solutions of TiBr₄ in SiBr₄ and SiBr₄ in TiBr₄ were studied with an ISSh-2-13 pulsed NQR spectrometer (production of SKB IRE AN SSSR [8]). In

Table 3. ⁷⁹Br NQR spectra of the impurity molecules of the group IV element tetrabromides with SnI₄ type structure (77 K, frequencies in MHz).

Lattice	Impurity						
	CBr ₄ (I)	SiBr ₄ (II)	GeBr ₄ (III)	TiBr ₄ (IV)	SnBr ₄ (V)		
SiBr ₄ (1)	323.23 t 323.85 s	176.585 s 176.663 t	210.73 t 211.13 s		195.51 s 196.00 t		
GeBr ₄ (2)			210.192 t 210.629 s				
TiBr ₄ (3)		177.32 s 177.42 t		46.309 s 47.127 t			

t: triple intensity line; s: single intensity line.

the latter case the accuracy is better than 0.1 K for T and amounts to 3 kHz for v. The accuracy in measuring v at 77 K is determined by the line width and lies in the range of 3-10 kHz.

Preparation of Samples

The melt of both components was quenched by plunging the ampule in liquid nitrogen, which virtually produced the required composition of the crystal [4]. The entering of the impurity molecules into the matrix lattice was recognized by the appearance of the "impurity" satellites in the NQR spectra of the matrix crystals (see Figure 1).

⁷⁹Br NQR Spectra of Tetrabromides of IV Group Elements in Matrix Lattices of the SnBr₄ Type

As is seen from Table 2, the 79 Br NQR spectra of the impurity molecules are always quadruples with varying mutual positions of the spectral lines. Thus, in tetrachloride matrices the spectrum of CBr₄ impurity is shifted towards higher frequencies compared to its spectrum in its own lattice (Table 1). Additionally, there is a characteristic high frequency shift of the high frequency triplet and a low frequency shift of the single low frequency line in the series of the CBr₄ solid solutions in SiCl₄, GeCl₄, TiCl₄ and SnCl₄ matrices. The dependence of the average frequency of the high frequency triplet \bar{v} and that of the single low frequency line v_1 on their difference Δ are seen in Figure 2. They

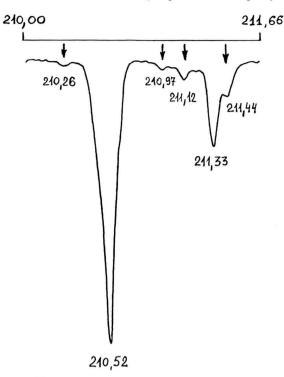


Fig. 1. ⁷⁹Br NQR spectrum of a GeBr₄ matrix (ST SnI₄) with 5 mol% SnBr₄ impurity. The "impurity" satellite lines are indicated by arrows.

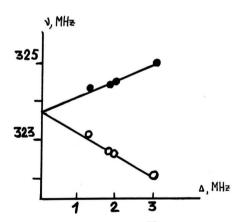


Fig. 2. Dependence of the ⁷⁹Br NQR frequencies of CBr₄ solved in solid tetrachlorides on the difference $\Delta = \bar{v} - v_1$. Open circles: v_1 , close circles: \bar{v} .

are well described by the linear equation

$$v = [v_0 + (b \pm 0.5) \Delta] \pm \delta$$
. (1)

The parameters of (1) are listed in Table 4.

Table 4. Parameters of (1) for EBr_4 in EX_4 (E = C, Si, Ge, Ti, Sn).

	Impurity	v_0	b	δ	n
In the ECl ₄ lattice	CBr ₄ SiBr ₄ GeBr ₄ TiBr ₄	323.72 174.455 209.56 46.43	-0.08 1.275 0.44 -0.97	0.05 0.11 0.08	4 4 4 2
In the EBr ₄ lattice	SiBr ₄ GeBr ₄ TiBr ₄	177.242 207.36 46.40	-0.083 1.11 -1.39	_ _ _	2 2 2

The behavior of the ⁷⁹Br frequencies for solid solutions of SiBr₄ and GeBr₄ in tetrachlorides is also well described by an equation of type (1). The TiBr₄ spectra in SiCl₄ and GeCl₄ lattices are inverted: The single line is at a higher frequency than the triplet. The latter shift agrees with well known regularities of NQR frequency shifts for coordinated atoms [12, 13]. Namely, NQR spectral lines, shifted to the lower frequencies, correspond to halogen atoms participating in the coordination with nontransitional elements, while participation of a halogen atom in coordination with a transitional element results in a shift to higher frequencies.

Unfortunately, only in the SiCl₄ matrix lattice we could succeed in obtaining the ⁷⁹Br NQR spectrum of SnBr₄. Our studies of tetrabromide impurities in tetrabromide lattices were also fragmentary. Therefore for the latter we could only roughly estimate the parameters of (1), as well as those of TiBr₄ (see Table 4).

⁷⁹Br NQR Spectra of Tetrabromides of IV Group Elements in Matrix Lattices of the SnI₄ Type

In the SiBr₄, GeBr₄ and TiBr₄ ³ matrix lattices, characteristic doublet spectra of ⁷⁹Br with the line intensity ratio 1:3 were observed (see Table 3). The weak and strong lines sometimes changed their places.

The temperature dependence of the bromine NQR frequencies in the cubic phase (III) of TiBr₄ is of par-

 $^{^3}$ According to [9] there are three polymorphous modifications of TiBr $_4$. Two of them, studied by X-ray method, belong to the ST II [10] and III [11]. The structure of the third, birefringent, modification, has not been established. As is seen from Tables 2 and 3, the $^{79}{\rm Br}$ NQR spectra of SiBr $_4$ in the TiBr $_4$ matrix lattice correspond to the crystal matrices of type II and III. The phase transition in TiBr $_4$ occurs much more easily than that in GeBr $_4$.

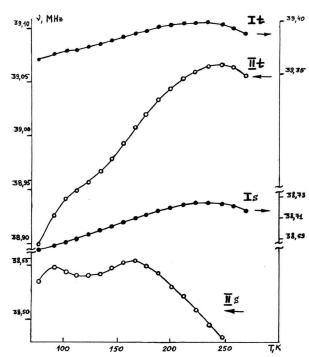


Fig. 3. Temperature dependence of 81 Br NQR frequencies in: I) pure $\mathrm{TiBr_4}$ (close circles); II) solid solution of $\mathrm{TiBr_4}$ in $\mathrm{SiBr_4}$ matrix (open circles). The letters "t" and "s" refer to triple and single lines, respectively.

ticular interest. Its abnormal character in the temperature range 4.2-317 K can be explained by an effect of the volume or by a decreasing $d_{\pi}-p_{\pi}$ overlap in the Ti-Br bond due to its bending vibrations, resulting in an increase of the frequency.

The temperature dependence of the ⁸¹Br NQR frequencies of TiBr₄ in its own lattice [13] and as small impurity in a SiBr₄ lattice in the range 77–270 K are represented in Figure 3. In the latter case the abnormal temperature dependence of bromine NQR frequencies is retained which serves as unambiguous evidence for the determining role of the intramolecular factor.

An additional evidence is the normal temperature dependence of the Br NQR frequencies of SiBr₄ in the TiBr₄ matrix (the temperature dependence of the ⁷⁹Br NQR frequency of SiBr₄ in its own lattice is also normal).

Results and Discussion

The ⁷⁹Br NQR spectra of the impurities in monoclinic lattices are mostly similar to that of the matrix

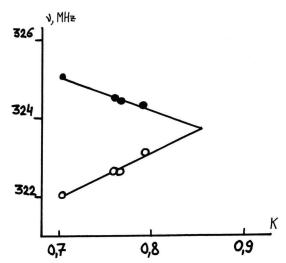


Fig. 4. Dependence of the average frequency of the high frequency triplet and of the low frequency line of 79 Br of CBr₄ on the formal close packing coefficient in tetrachloride matrix lattices. Open circles: v_1 , close circles: \bar{v} .

crystals. Sometimes, however, a pair of lines in the distant triplet coalesces, which indicates a local symmetry increase in the nearest environment of the impurity molecule introduced into the tetrachloride lattice.

Changes in the close packing coefficient in lattices of the same type must evidently follow the law of the inverse cube distance from atoms of the nearest environment. Therefore, comparison of NQR frequency changes for the impurity molecule, used as "probes" in various similar matrices, with the formal close packing coefficients characteristic of each matrix lattice can serve as a measure of spectral shift changes caused by the crystal field. Here, by the formal close packing coefficient we mean $K = V_{\text{mol}} / V_{\text{uc}}^{m}$, where V_{mol} is the volume of the impurity molecule, and V_{uc}^{m} is the volume allotted for one molecule in the matrix crystal unit cell (see Table 5). The matrix lattice and the impurity molecule are assumed to be rigid. The dependence of the average frequency of the high frequency triplet and that of the low frequency line of K for CBr₄ impurity in the tetrachloride lattices are seen in Figure 4. We define (see Table 6)

$$v = v_0 + A \cdot K \,. \tag{2}$$

It is clearly seen that the average frequency of the triplet is inversely proportional to K, which entirely corresponds to what was earlier observed for molecular crystals [4]. It should be assumed that extrapola-

Table 5. Values of the formal close packing coefficients.

Struc- ture type	Lattice	Impurity					
		CBr ₄	SiBr ₄	GeBr ₄	TiBr ₄	SnBr ₄	
SnBr ₄	SiCl ₄	0.792	0.834	0.889	0.912	0.968	
	GeCl ₄	0.769	0.806	0.859	0.882	0.935	
	TiCl	0.762	0.803	0.856	0.878	0.932	
	SnCl	0.703	0.740	0.790	0.810	0.859	
	GrBr ₄	0.636	0.670	0.715	0.733	0.778	
	TiBr ₄	0.621	0.654	0.697	0.715	0.759	
	$SnBr_4$	0.585	0.616	0.657	0.674	0.715	
SnI_4	SiBr ₄	0.707	0.741	0.790	0.819	0.860	
4	GeBr ₄	0.660	0.695	0.741	0.771	0.806	
	TiBr ₄	0.636	0.670	0.715	0.741	0.778	

Table 6. Parameters of (2) for EBr₄ in EX₄ (E=C, Si, Ge, Ti, Sn)

						_
	Impu- rity	Assign- ment	<i>v</i> ₀	A	δ	n
In the ECl ₄	CBr ₄	\bar{v} v_1	331.03 314.04	-8.56 11.30	0.03 0.04	4
lattice	SiBr ₄	\bar{v} v_1	189.869 180.929	$-15.626 \\ -6.437$	0.070 0.130	4
	GeBr ₄	\bar{v} v_1	226.51 208.72	-17.31 0.83	$0.09 \\ 0.08$	4
	TiBr ₄	\bar{v} v_1	49.44 55.89	$-2.80 \\ -8.80$	_	2
In the EBr ₄	SiBr ₄	\bar{v} v_1	184.523 167.078	-10.479 14.628	-	2 2
lattice	GeBr ₄	\bar{v} v_1	224.15 213.73	-6.75 -17.77	_	2
	TiBr ₄	\bar{v} v_1	54.46 63.96	-10.22 -21.76	_	2

tion of the above dependence to K=0 would allow to estimate the value of that frequency in vacuum [4, 6].

The low frequency line is directly proportional to K. This indicates an additional interaction of the atom corresponding to this line and agrees well with a weak intermolecular coordination $E \dots Br$. The K-dependence of the low frequency line is determined by two contributions: coordination and volume (van der

Table 7. Difference $v_1 - \bar{v}$ for EBr₄ in EX₄ (X = Cl, Br).

	Impurity	$v_{01} - \overline{v}_0$	$A_1 - \overline{A}$	$(A_1 - \overline{A})/\overline{A}$
In the ECl ₄ lattice	CBr ₄	-16.99	19.86	-2.32
	SiBr ₄	- 8.940	9.189	-0.588
	GeBr ₄	-17.79	18.13	-1.05
	TiBr ₄	6.45	-6.00	2.14
In the EBr ₄ lattice	SiBr ₄	-17.445	25.107	-2.396
	GeBr ₄	-10.420	-11.02	1.63
	TiBr ₄	9.099	-11.540	1.13

Vaals) factors. For Br atoms in CBr₄ the coordination factor is predominant, for SiBr₄ it is the volume factor. For GeBr₄ the contribution of both factors are approximately equal (see Table 7).

Conclusions

- 1. For the solid solutions of tetrabromides EBr_4 (E=C, Si, Ge, Ti, Sn), if the latter enter as small impurities the matrix crystal lattices EX_4 (E=Si, Ge, Ti, Sn; X=Cl, Br) the ⁷⁹Br NQR spectrum of the impurity is always similar to that of the matrix. In the monoclinic phase this similarity can be violated if the local symmetry of the environment of the impurity molecules is changed and becomes higher than the matrix lattice symmetry. Thus, for the cases I_4 , II_6 , II_2 , II_4 , IV_1 , IV_2 , III_2 (see Table 2), the ⁷⁹Br spectra of the impurity correspond to the symmetry 2 or m.
- 2. The totality of experimental fact points to the existence of a weak intermolecular coordination interaction of the central atom of the matrix molecule with one of the bromine atoms of the impurity molecule in the monoclinic phase.
- 3. As observed previously [4, 5], there is a linear dependence between the frequency shifts of the impurity molecules introduced into crystal matrices ECl₄ and EBr₄ (2 separate dependences) and the formal close packing coefficients defined for a rigid crystal lattice and impurity molecule.
- 4. The abnormal temperature dependence of the ^{79,81}Br NQR frequencies of TiBr₄ in the SiBr₄ lattice (as well as that in its own lattice) is shown to be determined by intramolecular factors.

- [1] G. K. Semin and I. M. Alymov, Phys. Stat. Sol. (a) 33, K 63 (1976).
- [2] G. K. Semin and I. M. Alymov, Phys. Stat. Sol. (a) 33, K 111 (1976).
- [3] I. M. Alymov, G. K. Semin, T. L. Khotsyanova, and T. A. Babushkina, Izv. AN SSSR, Ser. Fiz. 39, 2457 (1975) (in Russ.). Engl. transl.: Bull. Acad. Sci. USSR,
- Phys. Ser. 39, 7 (1975) by Allerton Press, Inc.
 [4] G. K. Semin, I. M. Alymov, and T. L. Khotsyanova, Izv. AN SSSR, Ser. Fiz. 42, 2055 (1978) (in Russ.). Engl. transl.: Bull. Acad. Sci. USSR, Phys. Ser. 42, 36 (1978) by Allerton Press, Inc.
- [5] G. K. Semin, I. M. Alymov, T. A. Babushkina, and V. P.
- Kazakov, Zh. Fiz. Khim. **54**, 776 (1980) (in Russ.). [6] G. K. Semin, A. M. Raevsky, E. V. Bryukhova, and T. L. Khotsyanova, Izv. AN SSSR, Ser. Fiz. 45, 450 (1981) (in Russ.).

- [7] S. I. Kuznetsov, I. M. Alymov, E. V. Bryukhova, and G. K. Semin, Izv. AN SSSR, Ser. Fiz. 39, 2524 (1975) (in Russ.).
- [8] B. N. Pavlov, in: Pribory i oborudovanije dlya nauchnych issledovanij, Moscow 1983 (in Russ.).
- [9] H.Sackmann, D. Demus, and D. Pankow, Z. Anorg. Allg. Chem. 318, 257 (1962).
- [10] P. Brand and J. Schmidt, Z. Anorg. Allg. Chem. 348, 257 (1966).
- [11] S. I. Troyanov, V. B. Rybakov, and V. M. Ionov, Zh. Neorg. Khim. 35, 883 (1990) (in Russ.).
- [12] G. K. Semin, S. I. Kuznetsov, I. M. Alymov, T. L. Khotsyanova, E. V. Bryukhova, L. A. Nisselson, and K. V.
- Tretyakova, Inorg. Chim. Acta 13, 181 (1975).
 [13] S. I. Kuznetsov, E. V. Bryukhova, and G. K. Semin, Izv. AN SSSR, Ser. Fiz. 45, 476 (1981) (in Russ.).